DFT Studies and Topological Analyses of Electron Density on Acetophenone and Propiophenone Thiosemicarbazone Derivatives as Covalent Inhibitors of Falcipain-2, a Major Plasmodium Falciparum Cysteine Protease

نویسندگان

  • Julius Ghogomu Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
  • Nyiang Nkungli Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
چکیده مقاله:

Thiosemicarbazones (TSCs) possess significant antimalarial properties believed to be linked to the inhibition of major cysteine proteases, such as falcipain-2, in Plasmodium falciparum. However, the binding modes of TSCs to the active site of these enzymes are not clear. As a result of this, the nature of the bonding interactions between the active site of falcipain-2 and different derivatives of acetophenone thiosemicarbazone (APTSC) and propiophenone thiosemicarbazone (PPTSC) acting as inhibitors, have been studied herein via topological analyses of electron density. Derivatives of APTSC and PPTSC are well known to possess inhibitory effects against Plasmodium falciparum. Equilibrium geometries of the inhibitor–active site complexes in the aqueous phase have been obtained via dispersion-corrected density functional theory (DFT-D3) calculations. In-depth analyses of the covalent and noncovalent interactions in these complexes have been performed using the quantum theory of atoms in molecules (QTAIM) and the noncovalent interaction (NCI) index. Results have revealed a covalent interaction between the thiocarbonyl carbon of the TSC moiety and the thiolate sulfur of the active site cysteine residue of falcipain-2. Moreover, hydrogen bonding, dispersive-like van der Waals and π-stacking interactions have been elucidated between the TSC moiety of each inhibitor and the histidine residue of the enzyme’s active site. The synergy of these interactions can enable the TSCs studied herein to specifically but transiently bind to the active site residues of falcipain-2. Based on our results, APTSC and PPTSC derivatives are potential reversible covalent inhibitors of falcipain-2, and are therefore promising precursors for the manufacture of antimalarial drugs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A chimeric cysteine protease of Plasmodium berghei engineered to resemble the Plasmodium falciparum protease falcipain-2.

The cysteine proteases falcipain-2 and falcipain-3 are hemoglobinases and potential targets for chemotherapy directed against Plasmodium falciparum, the most important human malaria parasite. Most in vivo evaluations of candidate antimalarials are conducted in murine malaria models, and falcipain homologs from rodent malaria parasites differ importantly from falcipain-2 and falcipain-3. We expr...

متن کامل

Falcipain-1, a Plasmodium falciparum cysteine protease with vaccine potential.

Cysteine proteases (falcipains) of Plasmodium falciparum are potential targets for antimalarial chemotherapy, since they have been shown to be involved in important cellular functions such as hemoglobin degradation and invasion/rupture of red blood cells during parasite life cycle. The role of falcipain-1 at the asexual blood stages of the parasite still remains uncertain. This is mainly due to...

متن کامل

Hemoglobin Cleavage Site-Specificity of the Plasmodium falciparum Cysteine Proteases Falcipain-2 and Falcipain-3

The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 degrade host hemoglobin to provide free amino acids for parasite protein synthesis. Hemoglobin hydrolysis has been described as an ordered process initiated by aspartic proteases, but cysteine protease inhibitors completely block the process, suggesting that cysteine proteases can also initiate hemoglobin hydrolysis. To ch...

متن کامل

A prodomain peptide of Plasmodium falciparum cysteine protease (falcipain-2) inhibits malaria parasite development.

Falcipain-2 (FP-2), a papain family cysteine protease of Plasmodium falciparum, is a promising target for antimalarial chemotherapy. Designing inhibitors that are highly selective for falcipain-2 has been difficult because of broad specificity of different cysteine proteinases. Because propeptide regions of cysteine proteases have been shown to inhibit their cognate enzymes specifically and sel...

متن کامل

The Plasmodium falciparum cysteine protease falcipain-2 captures its substrate, hemoglobin, via a unique motif.

Falcipain-2 (FP2) is a papain family cysteine protease and important hemoglobinase of erythrocytic Plasmodium falciparum parasites. Inhibitors of FP2 block hemoglobin hydrolysis and parasite development, suggesting that this enzyme is a promising target for antimalarial chemotherapy. FP2 and related plasmodial cysteine proteases have an unusual 14-aa motif near the C terminus of the catalytic d...

متن کامل

postnatal studies of bats (pipistrellus kuhlii and miniopterus schreibersii) & histomorphology and histochemistry studies of organs and diseases of (neurergus microspilotus and n. kaiseri)

1. to determine whether difference in birth body mass influenced growth performance in pipistrellus kuhlii we studied a total of 12 captive-born neonates. bats were assigned to two body mass groups: light birth body mass (lbw: 0.89 ± 0.05, n=8) and heavy birth body mass (hbw: 1.35 ± 0.08, n=4). heavier body mass at birth was associated with rapid postnatal growth (body mass and forearm length) ...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 4

صفحات  795- 817

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023